[Параметры] [Интерфейс] [Работа с письмами] [Ошибки]
(01) (02) (03) (04) (05) (06) (07) (08) (09) (10) (11) (12) (13) (14) (15) (16) (17) (18) (19) (20) (21) (22) (23) (24) (25) (26) (27) (28) (29) (30) (31) (32) (33) (34) (35) (36) (37) (38) (39) (40) (41) (42) (43) (44) (45) (46) (47) (48) (49) (50) (51) (52) (53) (54) (55) (56) (57) (58) (59) (60) (61) (62) (63) (64) (65) (66) (67) (68) (69) (70) (71) (72) (73) (74) (75) (76) (77) (78)


Постоянный магнит с индукцией поля 5 тесла умещается на ладони.


В статье "Магниты станут компактнее" (см. "самый интересный журнал Наука и жизнь " №12, 2001г.) журнал рассказал о рекордном значении магнитного поля, достигнутом в японском Национальном институте радиологических исследований: 4,45 тесла при охлаждении до -25оС (при комнатной температуре - 3,9 тесла). Это значение было перекрыто французскими физиками. Как сообщает журнал "ЦЕРНкурьер" (апрель, 2002) они создали постоянный магнит, на котором достигнут новый мировой рекорд плотности магнитного потока - 5 тесла при комнатной температуре (примерно в 100 тысяч раз больше поля Земли). Магнит уже нашел применение в европейском источнике синхротронного излучения ESRF (European Synchrotron Radiation Facility), расположенном в Гренобле.

Устройство Фредерика Блоча представляет сферу диаметром 120 мм, набранную из редкоземельных постоянных магнитов. Пространство с магнитным полем, пригодное для использования, имеет регулируемый зазор размером до 6 мм. Максимальное поле магнита - 5 тесла - было измерено в канале диаметром 0,15 мм.

Магнит разработал аспирант Фредерик Блоч (Frederic Bloch) на основе пионерских идей Клауса Халбэча (Klaus Halbach) из Беркли. В 1985 году Халбэч изобрел конфигурацию постоянных магнитов, в которой магнитный поток концентрируется на одной стороне набора магнитных элементов, расположенных в определенном порядке, и уменьшается на другой. Его идеи были использованы разработчиками новых систем магнитной подвески вагонов монорельсового транспорта и применены в ускорителях заряженных частиц.

Компактные постоянные магниты найдут применение, прежде всего, в циклотронах малой энергии технического (производство радиоизотопов, ионная имплантация) и медицинского назначения: ускоритель адронов для терапии рака станет в два с лишним раза меньше существующих. Команда специалистов уже приступила к работе над циклотроном с постоянными магнитами. Возможное применение они могут найти и на адронных коллайдерах высоких энергий с пучками небольшой интенсивности.

Впервые устройство применили в эксперименте ESRF по магнитным измерениям на тонких пленках. Компактный размер магнита позволил установить новое устройство на канал источника синхротронного излучения ESRF, в котором прежде использовались электромагниты с максимальным значением индукции магнитного поля 2,5 тесла.



(01) (02) (03) (04) (05) (06) (07) (08) (09) (10) (11) (12) (13) (14) (15) (16) (17) (18) (19) (20) (21) (22) (23) (24) (25) (26) (27) (28) (29) (30) (31) (32) (33) (34) (35) (36) (37) (38) (39) (40) (41) (42) (43) (44) (45) (46) (47) (48) (49) (50) (51) (52) (53) (54) (55) (56) (57) (58) (59) (60) (61) (62) (63) (64) (65) (66) (67) (68) (69) (70) (71) (72) (73) (74) (75) (76) (77) (78)