[Параметры] [Интерфейс] [Работа с письмами] [Ошибки]
(01) (02) (03) (04) (05) (06) (07) (08) (09) (10) (11) (12) (13) (14) (15) (16) (17) (18) (19) (20) (21) (22) (23) (24) (25) (26) (27) (28) (29) (30) (31) (32) (33) (34) (35) (36) (37) (38) (39) (40) (41) (42) (43) (44) (45) (46) (47) (48) (49) (50) (51) (52) (53) (54) (55) (56) (57) (58) (59) (60) (61) (62) (63) (64) (65) (66) (67) (68) (69) (70) (71) (72) (73) (74) (75) (76) (77) (78)

В поиске неуловимых гравитационных волн физики создают все новые сверхточные приборы больших размеров, планируют провести исследования на лазерных интерферометрах в Японии и США. Антенны этих устройств расположены на расстояниях, измеряемых километрами, но достоверных результатов регистрации волн, порожденных гравитацией, пока получено не было.

Гравитационные волны, которые излучаются ускоренны ми телами, предсказаны Общей теорией относительности Эйнштейна еще в 1916 году, но до сих пор никто не обнаружил следов этого явления. Начиная с момента теоретического предсказания гравитационных волн ученые испробовали различные способы их регистрации, но вплоть до сегодняшнего дня все попытки были тщетны, возможно, из-за того, что величина предполагаемых сигналов находится ниже порога их обнаружения, доступного в настоящее время.

Как отмечает специалист по сверхпроводимости Джон М.Гудкинд из Калифорнийского университета в Сан-Диего, "первый, кто сумеет наглядно продемонстрировать такое преобразование, может смело претендовать на Нобелевскую премию по физике, но вероятность такого наблюдения, скорее всего, близка к нулю".

Новый подход к обнаружению гравитационных волн предложил Раймонд Чао из Калифорнийского университета в Беркли, о чем сообщается в майском номере журнала "Scientific American" в статье под многозначительным названием "Философский камень. Сможет ли сверхпроводник преобразовать электромагнитные волны в гравитационные?" . Новая гипотеза Р.Чао предполагает, что сверхпроводник способен преобразовать радиоволны в гравитационное излучение, которое затем можно снова конвертировать с помощью сверхпроводника в исходную форму.

В своих рассуждениях он проводит аналогию между электромагнитным и гравитационным излучениями. Из его работы следует, что входящая в сверхпроводник электромагнитная волна будет частично отражена как гравитационная, которую другой сверхпроводник превратит снова в электромагнитную. То же самое должно произойти в любом электрическом проводнике, но в сверхпроводнике все электроны "шагают в ногу" - перемещаются синхронно и движутся в унисон, что усиливает предполагаемый эффект.

Раймонд Чао представил свою гипотезу в марте этого года на симпозиуме, посвященном 90-летию Джона Арчибальда Уилера, физика из Принстонского университета, а в апреле опубликовал препринт под названием "Сверхпроводник как передатчик и приемник гравитационного и электромагнитного излучения".

Пока теория обсуждается, Чао планирует поставить эксперимент в Беркли вместе со специалистом по электронике Уолтером Фителсоном. Поляризованное излучение СВЧ-диапазона (12 ГГц) будет подаваться на охлажденный сверхпроводящий диск из иттрий-бариевой керамики (YBCO) диаметром 1 дюйм (25 мм). Второй подобный диск сверхпроводника послужит детектором отраженных от первого диска гравитационных волн.

"Предложенные математические выкладки выглядят достаточно привлекательно", - отметил Брайс де Витт, пионер квантовой гравитации из университета штата Техас в Остине. Но его и других физиков смущает тот факт, что Чао в своих предположениях сделал ряд упрощений. И следует задаться вопросом, почему явление, если оно действительно существует, не было замечено ранее.

В чем-то новый подход перекликается с историей открытия электромагнитных волн. Дж. Максвелл создал теорию электромагнитного поля и предсказал в 1864 году существование электромагнитных волн. В 1887 году Генрих Герц предложил удачную конструкцию генератора электромагнитных колебаний и метод их обнаружения с помощью резонанса, а на следующий год экспериментально доказал существование электромагнитных волн.

В случае удачи предложенная методика позволит воплотить множество оригинальных идей, начиная от гравитационного способа регистрации радиоволн для целей астрономии до использования гравитационных антенн для связи непосредственно через твердую землю.

Несмотря на существование электромагнитных волн в окружающем мире с момента рождения Вселенной, их открытие стало возможным не в результате наблюдений, а путем создания вначале теории, а затем аппаратуры, ставшей средством связи и наблюдения за космическими событиями.

Опыты Герца повторил А.С.Попов, продемонстрировав 7 мая 1895 года грозоотметчик и высказав мысль о возможности его применения для передачи сигналов. В 1896 году он передал первую в мире радиограмму, состоящую из двух слов - "Генрих Герц".

Гравитация стала своего рода камнем преткновения для многих поколений физиков, хотя первое природное явление, с которым сталкивается ребенок, когда учится ходить, - это земное притяжение, и его бывает так трудно преодолеть.

Сверхпроводимость и гравитация преподносят сюрпризы и новые загадки, оставаясь явлениями таинственными и не до конца разгаданными. Много шума наделал эксперимент Евгения Подклетного, заметившего уменьшение веса тела, расположенного над вращающимся диском из сверхпроводящей керамики (см. "самый интересный журнал Наука и жизнь " №1, 1999г.). Группа авторов выдвинула гипотезу, что вращающийся диск сверхпроводника в какой-то мере экранировал воздействие гравитации. Несмотря на необычный характер сообщения, посвященного антигравитации, независимые эксперты рекомендовали материал к печати. Статья так и не появилась на страницах научных журналов, хотя работы в этом направлении продолжаются, но не афишируются, поскольку выполняются в ведомствах, так или иначе связанных с вопросами обороны и вооружения.



(01) (02) (03) (04) (05) (06) (07) (08) (09) (10) (11) (12) (13) (14) (15) (16) (17) (18) (19) (20) (21) (22) (23) (24) (25) (26) (27) (28) (29) (30) (31) (32) (33) (34) (35) (36) (37) (38) (39) (40) (41) (42) (43) (44) (45) (46) (47) (48) (49) (50) (51) (52) (53) (54) (55) (56) (57) (58) (59) (60) (61) (62) (63) (64) (65) (66) (67) (68) (69) (70) (71) (72) (73) (74) (75) (76) (77) (78)